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mastercurves is a Python package for automatically superimposing data sets to create a master curve, using Gaussian
process regression and maximum a posteriori estimation.

Check out the Quick Start section for more information on getting started, including an Installation guide.

Note: This project is under active development. Check back for updates!

INTRODUCTION 1
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2 INTRODUCTION



CHAPTER

ONE

CONTENTS

1.1 mastercurves

mastercurves is a Python package for automatically superimposing data sets to create a master curve, using Gaussian
process regression and maximum a posteriori estimation.

1.1.1 Citing

This package is based on the methodology outlined in A Data-Driven Method for Automated Data Superposition with
Applications in Soft Matter Science. If you use this software, please cite this paper! You can use this BibTex citation:

@misc{https://doi.org/10.48550/arxiv.2204.09521,
doi = {10.48550/ARXIV.2204.09521},
url = {https://arxiv.org/abs/2204.09521},
author = {Lennon, Kyle R. and McKinley, Gareth H. and Swan, James W.},
title = {A Data-Driven Method for Automated Data Superposition with Applications in␣

→˓Soft Matter Science},
publisher = {arXiv},
year = {2022},

}

1.1.2 News

• mastercurves is in the Python Package Index! You can now quickly install it using pip.

1.1.3 Installation

The easiest way to install and use this package is via pip:

$ pip install mastercurves

You can also use pip to download updates:

$ pip install mastercurves --upgrade

3
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1.1.4 Contributing

Questions, comments, or suggestions can be raised as issues on GitHub or emailed directly to krlennon[at]mit.edu.

1.2 Automated Data Superposition

Most methods for automated superposition of discrete data sets have two main components. First, they define a con-
tinuous interpolant for the data. Then, they define and minimize an objective function based on these interpolants.

The method used in this package (outlined here) uses Gaussian process regression to build statistical interpolants (that
come with mean and variance estimates). The objective is the negative logarithm of the posterior probability that one
data set is observed from the interpolant for another data set. Therefore, this method is an application of maximum a
posteriori estimation.

1.2.1 Gaussian Process Regression

Gaussian Process Regression (GPR) is a machine learning method for building a continuous model of a data set. GPR
treats each data point in a data set as observations 𝑦 of (not necessarily independent) random variables. These random
variables may be concatenated to form a random vector, or a stochastic process parameterized by the independent
coordinate 𝑥. If each random variable is assumed to follow a Gaussian distribution, then we call this a Gaussian
Process:

𝑦(𝑥) ∼ 𝐺𝑃 (𝜇(𝑥),𝐾(𝑥, 𝑥′; 𝜃))

The Gaussian Process model is defined by a mean function 𝜇(𝑥), which is usually assumed to be zero, and a covari-
ance kernel K(x,x’;theta), which defines the pointwise variance at 𝑥 and pairwise covariance between 𝑥 and 𝑥′. We
typically choose a form of the covariance kernel that encodes prior expectations about the data, such as some degree
of smoothness, scale, or uncorrelated variance. The default kernel in this package is:

𝐾(𝑥, 𝑥′; 𝜃) = 𝐴

(︂
1 +

(𝑥− 𝑥′)2

2𝛼𝑙2

)︂−𝛼

+𝐵 + 𝜎2𝛿𝑥,𝑥′

where the set of parameters 𝜃 = [𝐴,𝛼, 𝑙, 𝐵, 𝜎] are called hyperparameters. The values of these hyperparameters
are determined by maximizing the marginal log-likelihood of the data given the covariance kernel, with some prior
specified over the hyperparameters.

Once the covariance kernel is set and hyperparameters are optimized, the posterior mean 𝑚(𝑥) and variance 𝑠2(𝑥) of
the Gaussian Process model are fixed:

𝑚(𝑥*) = 𝐾(𝑥*, 𝑥)K−1𝑦

𝑠2(𝑥*) = 𝐾(𝑥*, 𝑥*; 𝜃)−𝐾(𝑥*, 𝑥)K−1K𝑇

where 𝑥* is an arbitrary coordinate of interest, 𝐾(𝑥*, 𝑥) is a vector obtained by evaluating the 𝐾(𝑥*, 𝑥′; 𝜃) with 𝑥′

taking on each value present in the data set, K is a matrix obtained by evaluating 𝐾(𝑥, 𝑥′; 𝜃) with both 𝑥 and 𝑥′ taking
on each value present in the data set, and 𝑦 is a vector consisting of each value of 𝑦 present in the data set.

A trained Gaussian Process model predicts a smooth interpolant with uncertainty bounds, which looks qualitatively
like the example presented below.

4 Chapter 1. Contents
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It is typical for GPR to be explained abstractly as specifying a prior distribution of functions that could represent a data
set, and applying the data set to obtained the posterior distribution of functions drawn from that prior that are most
likely to fit the data. For instance, the prior and posterior for a Radial Basis Function kernel (the first term in our kernel)
with an example data set are presented below (taken from sklearn).

1.2. Automated Data Superposition 5
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1.2.2 Maximum A Posteriori Estimation

Consider the problem of shifting a single data point (𝑥𝑖, 𝑦𝑖) by a horizontal scale factor 𝑎 and a vertical shift factor 𝑏.
Say that this data point belongs to a data set at state 𝑗, and we’d like to choose 𝑎 and 𝑏 so that this data point overlaps
with a GP model from state 𝑘. We begin by assuming that this shifted data point is an observation from the GP:

𝑏𝑦𝑖 ∼ 𝑁(𝑚𝑘(𝑎𝑥𝑖), 𝑠
2
𝑘(𝑎𝑥𝑖))

The negative log-likelihood (NLL) of this observation is:

− ln 𝑝(𝑥𝑖, 𝑦𝑖|𝑎, 𝑏) =
1

2

(︂
𝑏𝑦𝑖 −𝑚𝑘(𝑎𝑥𝑖)

𝑠𝑘(𝑎𝑥𝑖)

)︂2

+ ln 𝑠𝑘(𝑎𝑥𝑖) + ln
√
2𝜋

Now, consider generalizing this task to an entire data set 𝒟𝑗 = {(𝑥𝑖, 𝑦𝑖)}. The NLL for this entire set is the sum of the
NLLs of the individual data points:

− ln 𝑝(𝒟𝑗 |𝑎, 𝑏) =
∑︁

(𝑥𝑖,𝑦𝑖)∈𝒟𝑗

− ln 𝑝(𝑥𝑖, 𝑦𝑖|𝑎, 𝑏)

Finally, to obtain the posterior probability of certain shift factors given the data, we apply Bayes’ theorem:

𝑝(𝑎, 𝑏|𝒟𝑗) ∝ 𝑝(𝒟𝑗 |𝑎, 𝑏)𝑝(𝑎, 𝑏)

6 Chapter 1. Contents
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with a suitable choice of the prior over the shift factors, 𝑝(𝑎, 𝑏). We typically employ either a uniform prior or a
Gaussian prior, though others may be implemented within this package.

The maximum a posteriori estimate for the shift factors is that which minimizes the negative logarithm of the posterior:

{𝑎̂, 𝑏̂} = argmin
𝑎,𝑏

[− ln 𝑝(𝑎, 𝑏|𝒟𝑗)]

By repeating this estimation for each consecutive pair of data sets, we may construct the master curve.

1.3 Quick Start

1.3.1 Installation

To use mastercurves, first install it using pip:

$ pip install mastercurves

1.3.2 Creating a master curve

First import the package, then use the MasterCurve() constructor to initialize a master curve object:

from mastercurves import MasterCurve
mc = MasterCurve()

1.3.3 Adding data to a master curve

Next, collect data into three lists: x_data, y_data, and states. The elements of x_data and y_data should be
arrays containing the x- and y-coordinates for a single state (i.e. one data set, which will be superposed with data sets
comprising the other elements of x_data and y_data). The elements of states should be numeric values labeling
the corresponding states.

When the data is ready, add it to the master curve:

mc.add_data(x_data, y_data, states)

1.3.4 Defining the coordinate transformations

Then, add coordinate transformations to the master curve. If only horizontal shifting by a scale factor is required (the
typical case for time-temperature superposition), this can be done as follows:

from mastercurves.transforms import Multiply
mc.add_htransform(Multiply())

1.3. Quick Start 7
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1.3.5 Superposing the data

The master curve is now ready for superposition:

mc.superpose()

1.3.6 Plotting the results

Once superposition is complete, you can generate plots of the raw data, data with Gaussian process interpolants, and
the superposed mastercurve!

mc.plot()

1.4 Tutorial: Creating a Master Curve

This tutorial will explore the fundamentals of using the mastercurves package to create a master curve from synthetic
data describing the one-dimensional diffusion of an instantaneous point source. The tutorial is based on the example
in the introduction from A Data-Driven Method for Automated Data Superposition with Applications in Soft Matter
Science, and on this issue in the package repository.

1.4.1 Import Packages

Using the mastercurvse package will always require importing numpy and matplotlib.pyplot. It also requires
importing the mastercurves package itself or some modules from the package. We’ll import the essential modules
for this tutorial: mastercurves.MasterCurve and mastercurve.transforms.Multiply.

import numpy as np
import matplotlib.pyplot as plt
from mastercurves import MasterCurve
from mastercurves.transforms import Multiply

1.4.2 Creating Synthetic Data

Now, let’s generate some synthetic data from the diffusion equation. We’ll ultimately work with the logarithm of this
data, so let’s first define an array of positive 𝑥 coordinates:

x = np.linspace(0.1,2)

We’ll also sample from a few positive values of the time:

t_states = [1, 2, 3, 4]

We also need a function to compute the concentration at different (𝑥, 𝑡) from the diffusion equation:

diffusion_eq = lambda x, t, M, D : (M/np.sqrt(4*np.pi*D*t))*np.exp(-(x**2)/(4*D*t))

Now, we can create our synthetic data. We’ll just assume that 𝑀 = 1 and 𝐷 = 1 in dimensionless units for now:

8 Chapter 1. Contents
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x_data = [x for t in t_states]
c_data = [diffusion_eq(x, t, 1, 1) for t in t_states]

Lastly, we’ll take the logarithm of our data. The mastercurves package can work with the raw data itself for certain
cases, but performance is much better (and the package is more flexible) when working with the logarithm of data that
will be shifted by Multiply transforms (check out the Method section of the associated paper to learn why). So, we
should almost always take the logarithm of the data before developing the master curve.

x_data = [np.log(xi) for xi in x_data]
c_data = [np.log(ci) for ci in c_data]

1.4.3 Creating the Master Curve

We’re now ready to create a master curve and superpose the data. The first step is to initialize a MasterCurve object.
Because our synthetic data is noiseless, we’ll create a MasterCurve with no fixed noise:

mc = MasterCurve(fixed_noise = 0)

The next step is to add the data to the MasterCurve:

mc.add_data(x_data, c_data, t_states)

In the diffusion equation, there is both a dynamic concentration scale and a dynamic length scale. This means that we’ll
need to shift both the horizontal and vertical axes by a time-dependent multiplicative shift factor to superpose the data.
We can add these Multiply transforms (note that we could pass the argument scale="log" to these transforms to
indicate that we’re working with the logarithm of our data, but this is not necessary since "log" is the default scale):

mc.add_htransform(Multiply())
mc.add_vtransform(Multiply())

Finally, we’ll superpose the data using these transforms:

mc.superpose()

1.4.4 Plotting the Master Curve

We can use the built-in plot method to graphically display the data, Gaussian process fits, and master curve:

fig1, ax1, fig2, ax2, fig3, ax3 = mc.plot(colormap = lambda i: plt.cm.Blues_r(i/1.5))

We’ve passed a colormap argument to this method to define a custom colormap to more closely match the figures in
the paper. The value of this argument can be any colormap from matplotlib.pyplot.cm.

By default, the plot method will display the data on a logarithmic scale. Here, we’ll adjust to a linear scale to more
closely mimic the figures in the paper (using the ax.set_xscale and ax.set_yscale methods). You can see the
results below, which show the raw data (left), data with Gaussian process fits (center), and master curve (right).

1.4. Tutorial: Creating a Master Curve 9
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1.4.5 Analyzing the Shift Factors

An important feature of the mastercurves package is that we may analyze the shift factors used to superpose the data.
These shift factors are stored as attributes of the MasterCurve object. We can grab them directly from the object:

a = mc.hparams[0]
b = mc.vparams[0]

Note that we take the zeroth (0) element of the hparams and vparams attributes. This is because these attributes store
the shift factors for each transformation added to the MasterCurve, and there may be more than one transformation.
These shift factors are stores as a list, with each element containing the inferred shift parameters for each transform.
We only have one horizontal and one vertical transform here, so mc.hparams and mc.vparams each have only one
element. For mc.hparams, that element is the list of horizontal shift factors for each state (or the vertical shift factors
for mc.vparams).

We can plot these shift factors against the state coordinate, 𝑡:

fig, ax = plt.subplots(1,1)
ax.plot(t_states, a, 'ro')
ax.plot(t_states, b, 'bo')

Based on the diffusion equation, we expect that these shift factors should follow specific trends with 𝑡, namely that
they should vary with the inverse square root and square root of time, respectively. We’ll check this by plotting those
relationships:

As we see from the plot below, the inferred shift factors indeed closely match the expected behavior!

10 Chapter 1. Contents
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1.5 Tutorial: Adjusting the Gaussian Process Kernel

This tutorial will outline the steps for changing the covariance kernel used in the Gaussian process fits to data, and for
changing bounds on the kernel hyperparameters. We’ll use the previous tutorial on the diffusion equation as a base,
and make a few modifications to show how to change the kernel.

1.5.1 Changing the Gaussian Process Kernel

mastercurves provides a method, mastercurves.MasterCurve.set_gp_kernel, which allows the user to man-
ually adjust the Gaussian process kernel if they believe that the default kernel is insufficient for a particular data set.
The first step in changing the kernel is to import the desired kernels from scikit-learn. See the documentation for
scikit-learn for a list of supported kernels.

Here, we’ll consider a simple modification to the previous tutorial, where we change the RationalQuadratic com-
ponent of the kernel to an RBF. We’ll need to import the RBF, ConstantKernel, and WhiteKernel kernels:

from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel

We can now define our new composite kernel:

kernel = (RBF() * ConstantKernel() + ConstantKernel() + WhiteKernel())

To implement this kernel, we just need to add one line setting the kernel before we call superpose:

mc.set_gp_kernel(kernel)
mc.superpose()

1.5. Tutorial: Adjusting the Gaussian Process Kernel 11
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We can see below that the results are not substantially affected by the change in kernel. This is a good sign, as the
master curve should be determined by the data, rather than the interpolant selected for the data. The default kernel has
been selected to provide flexibility so that many different shapes are well represented by the Gaussian process models.

1.5.2 Changing the Hyperparameter Bounds

The mastercurves package uses the default bounds from scikit-learn on the hyperparameters for each kernel
function. However, you may run into warnings when superposing your data, like the following (from this issue in the
package repository):

ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__k1__k1__k1__
→˓alpha is close to the specified upper bound 100000.0. Increasing the bound and calling␣
→˓fit again may find a better value.

An issue like this one may arise from data varies across many orders of magnitude, or has sharp kinks. The
scikit-learn package is warning-heavy, and results are not typically adversely affected by these types of warn-
ings. However, if you see this warning and suboptimal performance of the package, you can address the warning by
defining a kernel with custom bounds.

The process for changing hyperparameter bounds is similar to that for changing the kernel itself. First, import all
relevant kernels from scikit-learn to redefine the kernel. If you’d like to change the bounds on the default kernel,
you should import the following:

from sklearn.gaussian_process.kernels import RationalQuadratic, WhiteKernel,␣
→˓ConstantKernel

Next, define the kernel function, and pass custom bounds to any of the constituent kernels that you’d like. To
address the above warning, we have to change the bounds for the alpha hyperparameter, which belongs to the
RationalQuadratic kernel:

kernel = (RationalQuadratic(alpha_bounds=(1E-5,1E6)) * ConstantKernel() +␣
→˓ConstantKernel() + WhiteKernel())

See the documentation for scikit-learn to learn more about the hyperparameters associated with each kernel. Note
that you may also change the default value for each hyperparameter in a similar manner.

Once the kernel is defined, the steps to adding it to a MasterCurve and superposing the data are the same as before:

mc.set_gp_kernel(kernel)
mc.superpose()
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1.6 Time-Temperature Superposition

This demo uses creep compliance data digitized from Plazek (1965). The data is pre-processed to account for changes
in compliance scale, so only horizontal shifting by a scale factor is required to superpose the data sets taken at different
temperatures.

1.6.1 Import Packages

We’ll need a few auxillary packages to run this demo:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as tck
import csv

We can either import the mastercurves package directly, or we can import only the modules that we need. Doing the
latter is a bit cleaner:

from mastercurves import MasterCurve
from mastercurves.transforms import Multiply

1.6.2 Loading the Data

Not all of the data sets contain the same number of points, so we’ll process the file using the CSV package.

T = [97, 100.6, 101.8, 104.5, 106.7, 109.6, 114.5, 125, 133.8, 144.9]
T.reverse()
ts = [[] for i in range(len(T))]
Js = [[] for i in range(len(T))]
with open("data/tts_plazek.csv") as file:

reader = csv.reader(file)
next(reader)
next(reader)
for row in reader:

for k in range(len(T)):
if not row[2*k] == "":

ts[k] += [float(row[2*k])]
Js[k] += [float(row[2*k+1])]

Notice that we reverse the order of the temperature array, so that the data is organized from high to low temperature.
This is because we expect lower temperature data to be shifted leftwards (with 𝑎 < 1). This is the default assumption
for Multiply() shifts, although it is possible to allow for 𝑎 > 1 as well, by changing the bounds of the transform.

As is typical during the creation of master curves, it will be easiest to shift the logarithm of the data. We’ll take the
logarithm of both the time and compliance coordinates before adding the data to the master curve.

for k in range(len(T)):
ts[k] = np.log(np.array(ts[k]))
Js[k] = np.log(np.array(Js[k]))

1.6. Time-Temperature Superposition 13
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1.6.3 Creating the Master Curve

Once the data is pre-processed, only a few steps are needed to create a master curve. First, initialize a MasterCurve
object:

mc = MasterCurve()

Next, add the data and the horizontal, multiplicative transform to the master curve:

mc.add_data(ts, Js, T)
mc.add_htransform(Multiply(scale="log"))

Note that we have passed the argument scale="log" to the Multiply() constructor, because the data added to the
MasterCurve object (i.e. ts and Js) is the logarithm of the measured variables. scale="log" is the default for a
Multiply() object, but we’ve shown it explicitly declared here for clarity.

We’re now ready to superpose the data!

mc.superpose()

1.6.4 Plotting the Results

Plotting the master curve is also simple. Now that we’ve superposed the data, let’s first change the reference state to
that defined in Plazek (1965). We need to know the current shift factors to do this, so we’ll obtain them as follows:

We need the index 0 because mc.hparams is a list whose elements are the parameters for each transformation applied
to the data. We have only one transformation here, so this list has only one element (this is usually the case). This
element (which we store in a) is itself a list, whose elements are the horizontal shift factor for each temperature.

We can use these shift factors to change the reference state:

mc.change_ref(97)
mc.change_ref(100, a_ref=10**(1.13))

Notice that we change the reference state here in two parts. Our method has shifted curves leftwards, but Plazek shifted
them rightwards. Changing the reference to the lowest temperature accounts for the difference in direction (by making
sure uncertainty propagation moves in the correct direction). The second change of reference simply rescales all of the
shift factors (and uncertainties) so that the lowest temperature shift matches that found by Plazek.

Now, we can plot the raw data, GP models, and master curve:

fig1, ax1, fig2, ax2, fig3, ax3 = mc.plot(log=True, colormap=plt.cm.viridis_r)

Lastly, let’s clean up the plots a little:

ax2.tick_params(which="both",direction="in",right=True,top=True)
ax3.tick_params(which="both",direction="in",right=True,top=True)
ax3.xaxis.set_major_locator(tck.LogLocator(base=10.0, numticks=14))
ax3.xaxis.set_minor_locator(tck.LogLocator(base=10.0, subs=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,
→˓0.8,0.9,1],numticks=14))
ax3.set_xticklabels(["", "", "", r"$10^{0}$", "", r"$10^{2}$", "", r"$10^{4}$", "", r"
→˓$10^{6}$", "", r"$10^{8}$", "", r"$10^{10}$"])
plt.show()

The results are shown below!

14 Chapter 1. Contents
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1.7 Sensitivity to Noisy Data

Here, we’ll build on the previous demo (Time-Temperature Superposition) to investigate the sensitivity of the method
to noise in the data.

This demo uses creep compliance data digitized from Plazek (1965). The data is pre-processed to account for changes
in compliance scale, so only horizontal shifting by a scale factor is required to superpose the data sets taken at different
temperatures.

1.7.1 Adding Noise to Data

Most of the code needed to run this example is the same as for the TTS demo. We’ll slightly modify how we pre-
processs the data, by adding Gaussian White Noise. We’ll set this up by choosing a relative noise level (ratio of the
noise to the signal), and seeding the random number generator (so that we all get the same result):

noise = 0.2
np.random.seed(3)

Next, we’ll add some synthetic noise to the creep compliance, and take the logarithm as before:

for k in range(len(T)):
ts[k] = np.log(np.array(ts[k]))
Js[k] = np.log(np.array(Js[k])*(1 + noise*np.random.randn(len(Js[k]))))

1.7.2 Creating and Plotting the Master Curve

The steps needed to create the master curve and superpose the data are the same as before:

# Build a master curve
mc = MasterCurve()
mc.add_data(ts, Js, T)

# Add transformations
mc.add_htransform(Multiply())

# Superpose
mc.superpose()

Plotting the master curve is also the same as before. We’ll change the reference state, plot, and then beautify the plots
(shown in the previous demo, but not here):

1.7. Sensitivity to Noisy Data 15
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a = mc.hparams[0]
mc.change_ref(97)
mc.change_ref(100, a_ref=10**(1.13))
figs_and_axes = mc.plot(log=True, colormap=plt.cm.viridis_r)

The results are shown below!

1.7.3 Comparing Shift Factors

Let’s see how the added noise has affected the shift factors. First, we’ll obtain the uncertainties in the shift factors:

da = mc.huncertainties[0]

and use these to plot error bars on the shift factors vs. temperature:

fig, ax = plt.subplots(1,1)
ax.errorbar(np.array(T), a, yerr=da, ls='none', marker='o', mfc='k', mec='k')

We can also compare the shift factors to the WLF equation with coefficients found by Plazek for this data set:

Tv = np.linspace(90,150)
ax.semilogy(Tv, 10**(-10.7*(Tv - 100)/(29.9 + Tv - 100)), 'b')
plt.show()

The shift factors agree with the WLF equation very closely. We also see that the shift factors for data with no added
noise (left) are very lose to those with added noise (right). The noise doesn’t substantially affect the performance of
the method, but is instead directly transduced to larger uncertainties in the shift factors (as seen in the larger error bars
in the plot on the right).
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1.8 MasterCurve

class mastercurves.mc.MasterCurve(fixed_noise=0.04)
Class definition for a master curve, consisting of multiple data sets superimposed.

A MasterCurve object will contain all of the data used to construct a master curve, along with the coordi-
nate transformations, parameters for coordinate transformations (such as shift factors), associated uncertainties,
Gaussian process models, and transformed data.

Attributes:
xdata (list[array_like]): list whose elements are the independent coordinates for a data set at a given
state

ydata (list[array_like]): list whose elements are the dependent coordinates for a data set at a given
state

states (list[float]): list whose elements are the value of the state defining each data set

htransforms (list[Transform]): list whose elements are the coordinate transforms performed on the
independent coordinate (i.e. horizontally)

hparam_names (list[string]): list whose elements are the names of the parameters for the horizontal
transforms

hbounds (list[tuple]): list whose elements are the upper and lower bounds for the horizontal transfor-
mation parameters

hshared (list[bool]): list whose elements indicate whether the corresponding element of
hparam_names is a parameter whose value is shared across all states (True) or takes on an independent
value for each state (False)

hparams (list[list[float]]): list whose elements are the values of the horizontal transformation pa-
rameters at each state

huncertainties (list[float]): list whose elements are the uncertainties associated with the values in
hparams

vtransforms (list[Transform]): list whose elements are the coordinate transforms performed on the
dependent coordinate (i.e. vertically)

vparam_names (list[string]): list whose elements are the names of the parameters for the vertical
transforms

vbounds (list[tuple]): list whose elements are the upper and lower bounds for the vertical transforma-
tion parameters

vshared (list[bool]): list whose elements indicate whether the corresponding element of
vparam_names is a parameter whose value is shared across all states (True) or takes on an independent
value for each state (False)

vparams (list[list[float]]): list whose elements are the values of the vertical transformation param-
eters at each state

vuncertainties (list[float]): list whose elements are the uncertainties associated with the values in
vparams

kernel (sklearn.gaussian_process.kernels.Kernel): kernel function for the Gaussian process
model

gps (list[sklearn.gaussian_process.GaussianProcessRegressor]): list whose elements are
Gaussian process models for each state
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xtransformed (list[array_like]): list whose elements are the transformed independent coordinates
for a data set at a given state

ytransformed (list[array_like]): list whose elements are the transformed dependent coordinates for
a data set at a given state

__init__(fixed_noise=0.04)
Initialize a MasterCurve object.

Args:
fixed_noise (float): the fixed noise level for the Gaussian process models, corresponding to ex-
perimental uncertainty not evident in the data. By default, the noise level is 0.04.

add_data(xdata_new, ydata_new, states_new)
Add a data set or data sets to the master curve.

Args:
xdata_new (array_like or list[array_like]): array(s) corresponding to the dependent coordi-
nates for given states

ydata_new (array_like or list[array_like]): array(s) corresponding to the independent coor-
dinates for given states

states_new (float or list[float]): values of the state parameter corresponding to the data in
xdata_new and ydata_new

add_htransform(htransform)

Add a horizontal transformation (or series of sequential transformations) to the master curve.

Args:
htransform (Transform): object of a Transform class, which implements the coordinate transfor-
mation and stores information about transformation parameters

add_vtransform(vtransform)

Add a vertical transformation (or series of sequential transformations) to the master curve.

Args:
vtransform (Transform): object of a Transform class, which implements the coordinate transfor-
mation and stores information about transformation parameters

change_ref(ref_state, a_ref=1, b_ref=1)
Change the reference state for the master curve.

Args:
ref_state (float): the new reference state, which may or may not be one of the current states

a_ref (float): if ref_state is not a current state, must be provided. This is the new reference’s
horizontal shift with respect to the current reference. Defaults to 1.

b_ref (float): if ref_state is not a current state, must be provided. This is the new reference’s
vertical shift with respect to the current reference. Defaults to 1.

clear()

Clear the master curve’s data (useful for memory management).

hpopt(lamh=None, lamv=None, npoints=100, alpha=0.5, folds=10)
Perform hyperparameter optimization on the prior (regularization) using MCCV.

Args:
lamh (list[tuple[float]]): ranges (tuples) for the horizontal hyperparameter search. If not
searching this parameter, then the entry should be None.
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lamv (list[tuple[float]]): ranges (tuples) for the vertical hyperparameter search. If not searching
this parameter, then the entry should be None.

npoints (int): number of grid points to search. Default is 100.

alpha (float): keep rate for MCCV. Default is 0.5.

folds (int): number of MCCV folds. Default is 10.

Returns:
lamh_opt (list[float]): optimal horizontal hyperparameters at each state

lamv_opt (list[float]): optimal vertical hyperparameters at each state

output_table(file=None)
Write a csv file with a table of all parameters (and return as a data frame).

Args:
file (string): (optional) path to the file to which the data frame will be written

Returns:
df (pandas.DataFrame): data frame containing the transformation parameters

plot(log=True, colormap=matplotlib.pyplot.cm.tab10, colorby='index')
Plot the data, GPs, and master curve.

Args:
log (bool): whether the data represents the logarithm of the measured quantity. Defaults to True.

colormap (matplotlib.colors.Colormap): colormap for plotting. Defaults to the tab10 col-
ormap.

colorby (string): how to color the data. Options are index for coloring by index, or state for
coloring by the value of the state. Defaults to index.

Returns:
fig1, ax1 (matplotlib.Figure and matplotlib.axes.Axes): the figure and axes objects dis-
playing the raw (untransformed data)

fig2, ax2 (matplotlib.Figure and matplotlib.axes.Axes): the figure and axes objects dis-
playing the untransformed data and GP models

fig3, ax3 (matplotlib.Figure and matplotlib.axes.Axes): the figure and axes objects dis-
playing the superposed data (i.e. the master curve)

set_gp_kernel(kernel)
Set the kernel function for the Gaussian Processes used to fit the data.

Args:
kernel (sklearn.gaussian_process.kernels.Kernel): the (potentially composite) kernel
function

superpose(lamh=None, lamv=None)
Optimize the transformations to superpose the data sets onto a single master curve.

Args:
lamh (list[float]): hyperparameters for the horizontal shifts, corresponding to each state in the
master curve. Defaults to None, meaning a uniform (unregularized) prior.

lamv (list[float]): hyperparameters for the vertical shifts, corresponding to each state in the master
curve. Defaults to None, meaning a uniform (unregularized) prior.

Returns:
loss_min (float): the minimum loss computed during superposition
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1.9 Transforms

This package comes with two built-in coordinate transformations, Multply and PowerLawAge. Users can define
custom coordinate transformations by following the structure of these class definitions.

1.9.1 Multiply

class mastercurves.transforms.multiply.Multiply(bounds=(0.01, 1), scale='log', prior='uniform')
Class definition for a multiplicative shift.

Attributes:
bounds (tuple[float]): the bounds for the shift factor

default (float): default value of the shift factor (1)

prior (p, lam -> float): the prior distribution over the shift factor. Either Gaussian or uniform.

scale (string): coordinate scale, either log or linear

shared (bool): False, since the shift factors are not shared between states

type (string): Multiply

__init__(bounds=(0.01, 1), scale='log', prior='uniform')
Initialize the Multiply object.

Args:
bounds (tuple[float]): the upper and lower bounds for the shift factors. Defaults to (1E-2,1).

scale (string): either “log” for a shift in the logarithm of a variable or “linear” for the shift in the
variable. Defaults to “log”.

prior (string): either “uniform” for a uniform prior over the shift factors or “Gaussian” for a Gaus-
sian prior. Defaults to “uniform”.

backward(param, state, data)
Run a forward shift on the data (from the reference state to the current state).

Args:
param (float): value of the shift factor for this state

state (float): value of the state parameter for this data set

data (array_like): coordinates to be shifted

Returns:
transformed (array_like): the transformed coordinates

forward(param, state, data)
Run a forward shift on the data (from the current state to the reference state).

Args:
param (float): value of the shift factor for this state

state (float): value of the state parameter for this data set

data (array_like): coordinates to be shifted

Returns:
transformed (array_like): the transformed coordinates
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1.9.2 PowerLawAge

class mastercurves.transforms.powerlawage.PowerLawAge(tref, scale='log')
Class definition for a power law aging shift.

Attributes:
bounds (tuple[float]): the bounds for the aging exponent

default (float): default value for the aging exponent (1.1)

param (string): name of the aging exponent (“mu”)

prior (p, lam -> float): the prior distribution over the aging exponent. Only a uniform prior currently
supported.

scale (string): coordinate scale, either log or linear

shared (bool): attr:True, since the aging exponent is state-independent

tref (float): the reference time

type (string): PowerLawAge

__init__(tref, scale='log')
Initialize the PowerLawAge object.

Args:
tref (float): the reference time

scale (string): the scale of the time axis (“log” or “linear”). Defaults to “log”

backward(param, state, data)
Run a backward shift of the data (from effective time to real time).

Args:
param (float): value of the aging exponent “mu”

state (float): value of the state parameter (the wait time)

data (:attr:’array_like`): the effective coordinate (either xi or log(xi))

Returns:
transformed (array_like): the transformed real time coordinate (either t or log(t))

forward(param, state, data)
Run a forward shift of the data (from real time to effective time).

Args:
param (float): value of the aging exponent “mu”

state (float): value of the state parameter (the wait time)

data (:attr:’array_like`): the time coordinate (either t or log(t))

Returns:
transformed (array_like): the transformed effective time coordinate (either xi or log(xi))
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